
International Journal of Heat and Mass Transfer 46 (2003) 5123–5136

www.elsevier.com/locate/ijhmt
Simulation of micro-scale interaction between ice
and biological cells

L. Mao a, H.S. Udaykumar a,*, J.O.M. Karlsson b

a Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242-1527, USA
b Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA

Received 10 May 2003; received in revised form 17 June 2003
Abstract

This paper presents numerical simulations of the response of a biological cell during freezing. The cell is modeled as

an aqueous salt solution surrounded by a semi-permeable membrane. The concentration and temperature fields both

inside and outside a single cell are computed taking into account heat transfer, mass diffusion, membrane transport, and

evolution of the solidification front. The external ice front is computed for both stable and unstable growth modes. It is

shown that for the particular geometry chosen in this study, the instabilities on the front and the diffusional transport

have only modest effects on the cell response. For the cooling conditions, solute and cell property parameters used, the

low Peclet regime applies. The computational results are therefore validated against the conventional membrane-limited

transport (Mazur) model. Good agreement of the simulation results with the Mazur model are obtained for a wide

range of cooling rates and membrane permeabilities. A spatially non-isothermal situation is also considered and shown

to yield significant differences in the cell response in comparison to the isothermal case.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Successful freezing of biological material for long-

term storage hinges critically on the physics of interac-

tion of ice with living matter (cells and tissue). A primary

concern in cryopreservation is the damage caused to in-

dividual cells in the tissue as a result of solidification of

water. While there is some debate on the details [1–4], the

fundamental principles of ice-induced cell damage are

fairly well understood and are summarized below. Ice

formation is kinetically favored to occur first in the ex-

tracellular solution in preference to the confined intra-

cellular space. As ice approaches a cell, solutes (e.g. salts

such as NaCl) are rejected into the unfrozen extracellular

solution. The increasingly salty extracellular environ-

ment results in osmotic non-equilibrium across the cell

membrane. The cell overcomes this in one of two ways:
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(a) intracellular water is transported to the extracellular

solution; or (b) ice forms within the cell, thus adjusting

the osmolality inside the cell. The dominant mechanism

depends on the cooling rate. At low cooling rates, water

has ample time to escape from the cell, causing significant

cell dehydration and preventing ice formation. However,

too low a cooling rate can be detrimental to survival

because the cell finds itself immersed in a progressively

hypertonic environment for longer times (resulting in

death due to ‘‘solution effects’’ [2]). Also, excessive

shrinkage during slow freezing and rapid volume recov-

ery upon thaw is believed to structurally damage the cell

[5,6]. For high cooling rates, water is unable to escape

rapidly enough, resulting in water being trapped within

the cell. The trapping of water is exacerbated by the de-

crease in cell membrane permeability [7] and decrease in

the mobility of water molecules as the temperature is

lowered. Therefore, as the temperature drops, the intra-

cellular solution is supercooled and the trapped water

freezes, leading to intracellular ice formation (IIF) [8,9].

Cell death due to IIF is thought to occur due to irre-

versible physicochemical damage to the cell organelles
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and membrane. Thus, there is an intermediate optimal

cooling rate for cell survival and its identification is

a matter of primary concern for successful cryopre-

servation.

Experimental observations demonstrate that the

presence of extracellular ice significantly increases the

probability of IIF [8]. Such observations have been ex-

plained by the hypothesis that intracellular ice forms by

a nucleation process, and that interactions between the

cell membrane and extracellular ice crystals create cat-

alytic sites for ice nucleation on the interior surface of

the cell [10], a mechanism known as surface-catalyzed

nucleation (SCN). In order to rigorously test this hy-

pothesis, and to elucidate the biophysical mechanisms

underlying the SCN process, a detailed model of the

interactions between cells and external ice crystals is

required. Most modeling work on ice–cell interaction to

date has resorted to a quasi-steady treatment of solute

transport and extracellular ice formation, essentially

following the early work of Mazur [7]. For example,

solute polarization within and outside the cell is usually

ignored and the cell is treated as immersed in an iso-

thermal medium. The intra- and extracellular solutions

are assumed homogeneous in composition and the ex-

tracellular ice front is assumed to be planar, and in

equilibrium with the solution. The temperature and

solute at the ice–solution interface are therefore related

through equations that assume thermodynamic equilib-

rium (which ignores effects of supercooling [1]). The

exception was the early work of Levin et al. [11,12],

which modeled diffusion in one-dimensional cells with

moving semi-permeable membranes. They showed that

in the range of cooling rates where IIF occurs, both

transmembrane and intracellular solute transport are

important. However, even in that work, extracellular

solute segregation was ignored. Significantly, in later

work solute polarization was altogether neglected by

Levin [13]. This is perhaps because of the considerable

complexity of the higher-dimensional coupled heat and

mass transport and moving boundary problem involved

in ice–cell interaction. Only in the past decade or so have

numerical methods become capable of tackling the

complex moving boundary problem of solidification-

front motion in pure [14,15] and impure systems [16]. In

recent papers Jaeger and coworkers [17,18] have per-

formed numerical simulations of the two-dimensional

cell interactions with planar as well as non-planar

freezing fronts and examined the thermosolutal field

during the engulfment of the cells by the ice front. The

present work is concerned with the shrinkage of a cell

that is surrounded by an advancing ice front. The de-

tailed long-time development of dendritic ice crystals is

not simulated in the present work. The history of the ice

front advance towards the cell can be important [17], but

is an issue that will not be examined in the present work.

However, the model developed in the present paper does
afford the ability to examine the relative importance of

various transport mechanisms that influence cell volu-

metric response to ice. These include: (a) diffusional

transport of water in the extra- and intracellular solu-

tions, (b) transport of water across the semi-permeable

cell membrane, controlled by the membrane permeabil-

ity, (c) ice front morphology (i.e. length scales in the case

of an unstable front) and its influence on cell response,

(d) salt rejection and formation of salt boundary layer

ahead of the front and its influence on the cell shrinkage

and (e) the coupled transport of heat and species in the

non-isothermal case and the resulting differences from

the isothermal case.
2. Formulation and numerical method

In this paper we use a sharp interface method [14–16]

to simulate the dynamics of the phase boundary. We

solve, using methods described in previous papers [16],

the diffusion equations for species and temperature field

in the extracellular and intracellular medium:

ocNaCl

ot
¼ Dl=sr2cNaCl ð1Þ

and

oT
ot

¼ al=sr2T ð2Þ

where cNaCl is the concentration of salt, T is the tem-

perature, t is time, a and D are thermal and solutal

diffusivities respectively, and subscripts l and s imply

liquid and solid phases. Note that in reality the solute

diffusivity is dependent on the concentration, which can

vary quite markedly in the solution. Spatial variations in

diffusion coefficients can be handled easily by the present

numerical method. However, such variations may ob-

fuscate other transport effects that form the central issue

of investigation in this paper and this aspect is therefore

left for future work.

The temperature and concentration fields are coupled

through boundary conditions at the ice–solution inter-

face, where the phase diagram relates the interface

temperature and composition. The phase diagram is

modeled with an empirical relationship [19]. After in-

cluding capillarity effects the interface temperature is

given by:

TLi ¼ b0 þ b1cLi þ b2c2Li þ b3c3Li þ b4c4Li �
cslðhÞ
L

Tmj ð3Þ

where c is the salt concentration, subscript Li indicates

the interface value on the liquid side, Tm is the melting

point of ice, j is the interfacial curvature, L is the latent

heat of fusion, h is the angle that the normal to the in-

terface makes with the horizontal, and the anisotropic
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surface tension is modeled in the form employed

in crystal growth simulations [20], i.e. cslðhÞ ¼
c0ð1–15e cosðmhÞÞ, where e is the anisotropy strength and

m defines the symmetry characteristics. For the present

simulations we adopt e ¼ 0:05 and m ¼ 6 and the surface

tension parameter c0 ¼ 0:033 N/m for the ice–water in-

terface, unless otherwise stated. The terms containing

the constants bi (i ¼ 0–4) in Eq. (3) arise from the rela-

tionship on the liquidus curve between the temperature

and concentration of species. In this work, we use only

the first-order concentration-dependent term on the

right hand side of Eq. (3), i.e. the liquidus curve is

linearized. The species and heat balances at the ice–

solution interface are given by:

ð1� pÞ � cLi � VN ¼ Ds �
ocNaCl

on

� �
s

� Dl �
ocNaCl

on

� �
l

ð4Þ

and

L � VN ¼ ks �
oT
on

� �
s

� kl �
oT
on

� �
l

ð5Þ

where p is the partition coefficient, VN is the normal

velocity of advance of the ice front, n is the normal di-

rection and ks and kl are thermal conductivities of the

solid and liquid respectively. The thermal conductivity

of the liquid phase is related to the concentration of salt

in the aqueous solution and decreases with increasing

salt solution. The value for the unfrozen liquid and for

the ice is listed in Appendix A. The conductivity for pure

liquid water is 0.61 W/mK. The variation of the liquid

conductivity with the concentration field can be modeled

by taking a linear variation with respect to the concen-

tration from the known values at cNaCl ¼ 0 and at the

initial concentration of cNaCl ¼ c0.
At the cell membrane, which is the boundary that

separates the intra- and extracellular regions, the species

balances on the intra- and extracellular sides read:

DNaCl;e

ocNaCl

on

� �
e

¼ cNaCl;eJw;

DNaCl;i

ocNaCl

on

� �
i

¼ cNaCl;iJw

ð6Þ

where subscripts e and i apply to the extra- and intra-

cellular medium respectively.

The flux of water from the cell due to osmosis is given

by Darcy�s law:

Jw ¼ RTLpðcNaCl;e � cNaCl;iÞ ð7Þ

In the above, Lp is the hydraulic conductivity of the

membrane. The cell membrane permits water to traverse

across the membrane but does not permit exchange of

salts. The hydraulic conductivity decreases with tem-

perature, and its temperature-dependence has an Ar-

rhenius form Lp ¼ Lpg expð�Eað1=T � 1=TgÞ=RÞ where
Ea is an activation energy for water transport, R is the

universal gas constant, Tg is a reference temperature, and

Lpg is the hydraulic conductivity at Tg. However, to

clearly delineate the effects of diffusion from other ef-

fects, we set Ea ¼ 0 for all the cases presented in this

paper. The material parameters used in the above model

pertaining to the freezing of a binary NaCl–H2O solu-

tion were obtained from the literature [20]. The modeled

cell corresponds to an erythrocyte [17]. The non-

dimensional quantities and material parameters used in

this work are listed in Appendix A.
3. Modeling of the response of the cell

In [16], the micro-scale freezing processes of aqueous

solutions typically used in cryopreservation were simu-

lated using the species and heat transport in the solution

(Eqs. (1) and (2)). The solute and temperature fields in

the solid and liquid were matched at the sharp phase

boundary using the interfacial species and heat balance,

Eqs. (4) and (5). The phase diagram, represented by Eq.

(3) was used to relate the interfacial temperature with

the species concentration. Since the interface is treated

as a sharp entity in the numerical method [16] used in

this work, the material property jumps, such as species

diffusivity, thermal diffusivity and the partition coeffi-

cient for solute are accurately incorporated. This meth-

odology for the computation of solidification of aqueous

solutions is coupled with the heat and mass transport

around a single cell. The cell is modeled as comprising a

salt solution enclosed within a semi-permeable mem-

brane. Initially, the cell rests in an isotonic salt solution.

As seen from Eq. (7), the flux of water to and from the

cell is controlled by the membrane permeability and is

driven by the concentration differential across the

membrane. The implementation of the osmotic flux

across the membrane is achieved using the sharp-inter-

face method [14]. Heat and mass transport are solved in

the extra- and intracellular domains subject to the in-

terface conditions applicable at the embedded solid–

liquid (ice) front and at the cell membrane.

For purposes of comparison with the present model,

a conventional membrane-limited transport model was

also implemented. Eq. (7) was used to determine the rate

of water transport from the cell, assuming well-mixed

intracellular and extracellular compartments, and that

the extracellular solution maintains an equilibrium with

a planar ice front. Thus, the external salt concentration

was computed using the liquidus model (based on Eq.

(3)): cNaCl;e ¼ ðT � b0Þ=b1. The salt concentration in the

cell interior is given by cNaCl;i ¼ ðc0V0Þ=V , where c0 and

V0 are the salt concentration and cell volume, respec-

tively, under isotonic conditions. The cell volume at each

instant was determined by solving the ordinary differ-

ential equation
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dV
dt

¼ �S � Jw ð8Þ

using a fourth-order Runge-Kutta scheme with step size

control. The cell membrane surface area S was com-

puted from the cell volume by making the conventional

assumption that the cell shape remains circular during

dehydration, and the temperature history T ðtÞ was de-

fined by the given cooling protocol, assuming instanta-

neous heat transfer throughout the system.
(b)

boundary

Jw

ds

wmemb JU −=
Cell
Membrane

Extracellular
Solution

Intracellular
Solution

Fig. 1. Schematic of the computational model for the ice–cell

interaction problem. (a) The cell and ice–solution interface are

placed on a uniform Cartesian mesh and the interfaces are

moved over the mesh. A finite volume discretization of the

governing equations is performed on the fixed mesh. (b) The

computational model for cell membrane.
4. Results

4.1. Computational setup

The computations of the freeze-front interaction with

the modeled cell were performed in the configuration

shown in Fig. 1. The computational domain of dimen-

sions 10Rcell on each side was chosen where Rcell is the

radius of the cell. The cell was placed in the center of the

domain. The solid–liquid interface is initially circular

and is placed concentric with the cell so that the freeze

front radius is 4Rcell. In the following, both isothermal

and non-isothermal cases have been computed. In the

isothermal case, a condition closely approximating the

bulk of experiments performed on cell suspensions using

cryomicroscopy, the temperature of a small sample is

lowered at a specified cooling rate. The thermal diffu-

sivity being larger than mass diffusivity, the temperature

is typically considered to be uniform in the entire com-

putational domain. The heat equation is therefore not

solved in this case and the temperature field is specified

everywhere (i.e. at each grid point). For the non-

isothermal case, the temperature at the edge of the do-

main is specified based on the cooling rate and the heat

diffusion equation (Eq. (2)) is solved. The interface

temperature is then just the imposed temperature based

on the cooling rate and the interface advection is per-

formed by iterating to satisfy Eqs. (3)–(5) simulta-

neously [16]. The initial conditions for temperature and

salt concentrations are specified, T ðx; y; t ¼ 0Þ ¼ T0 is

given for each case in the results section, while the initial

concentration c0 ¼ 0:1548 mol/l for all cases. The

boundary conditions on the domain boundaries are

specified as: T ¼ T0 � Bt, and ocNaCl

on ¼ 0.

The present numerical method has been validated

[15] against solvability theory for wavelength and den-

drite tip velocity selection for pure materials. As shown

in Udaykumar and Mao [16], the extent of the super-

cooled region ahead of the ice front depends on the

cooling rate. Thus, as the cooling rate increases the se-

verity of the supercooling increases and the interface

instability is enhanced. In fact, breakdown of the front

into cellular/dendritic structures is inevitable for the

freezing conditions adopted in typical cryoprotocols,
even for the lowest cooling rates (1 �C/min). In the nu-

merical simulations presented in this work the instabil-

ities on the front arise due to numerical noise, just as in a

laboratory sample the instabilities are triggered by var-

ious noise sources including environmental and thermal

fluctuations. However, numerical noise (which is aniso-

tropic due to such factors as sweep directions in the

equation solver, arc length parameterization and deriv-

ative estimations on the interface etc.) leads to the

development of asymmetric perturbations and the

instabilities develop very slowly. To control and hasten

the growth of instabilities small sinusoidal perturbations

(with amplitudes of a few mesh spacings and wave-

lengths corresponding to 1/5th the circumference of the

initial circular front) were initially superposed on the

circular interface. The perturbations that grow and

the wavelengths that are established in the later stages of

growth are dependent on the interfacial tension value as

indicated by microscopic solvability theory. In the case

of high growth rate of the instabilities, for example for
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large driving forces (supercooling, cooling rate) and low

stabilization (i.e. low surface tensions) asymmetries in

the numerically obtained fronts may arise due to the

amplification of grid-induced noise. Such asymmetries

can be suppressed by employing higher mesh resolu-

tions. The computational cost to fully suppress all such

asymmetries using a fine mesh may be prohibitive, de-

pending on the growth conditions. Thus a compromise

is often necessary between the computational cost and

elimination of noise effects. In this work, we show that

the conclusions reached on the cell response to the ap-

proaching ice front morphology are independent of oc-

casional grid-induced perturbations that are evident on

the unstable freeze front.

4.2. Cell–ice interactions

In order to assess the effect of the ice-front mor-

phology on the cell volume response we first computed

cases with artificially enhanced surface tension to sup-

press the development of any instability that may arise,

even in the presence of the initially imposed perturba-

tions. The surface tension in this case (c0 ¼ 1:65 N/m) is

therefore made high enough that the grid-scale pertur-

bations will not grow. As we show later, this artifice has

only a modest effect on the conclusions regarding cell

response in the present configuration. In Fig. 2, we show

results of calculations of the interaction of such a sta-

bilized ice front with a cell. Unless specified otherwise,

the following cases are isothermal. The temperature at

each point in the domain decreases at the specified

constant cooling rate denoted B. The cooling rates im-

posed in this study fall within the range of those com-

monly employed in cryopreservation protocols for red

blood cells (100–10,000 �C/min). In the case shown in

Fig. 2, the cooling rate is 1000 �C/min. In Fig. 2(a)–(d)

we show the contours of salt concentration in the un-

frozen solution as the ice forms, removing water from

the suspending medium and causing the cell to respond

by osmotic shrinkage. The boundary layer of salt ac-

companying the ice front is evident in the figure. The

time (in seconds) corresponding to each of the figures is

noted in the accompanying caption. The temperatures at

the instants shown are also indicated. Note that the

freezing and cell shrinkage takes place rapidly (in about

0.75 s) for this cooling rate. The temperature is only

about )13 �C at the final stage in Fig. 2(d). This rapid

dehydration, before the temperature falls to values close

to the SCN range suggests that the protocol shown in

Fig. 2 will perhaps be successful in avoiding IIF. In Fig.

2(e) and (f) we show the solute concentration profile

across the domain on the horizontal centerline. The

profile in Fig. 2(e) corresponds to the instant in Fig. 2(a)

and that in Fig. 2(f) corresponds to Fig. 2(c). The solute

partition at the ice front is clearly seen. The solute

boundary layer is quite steep in Fig. 2(e) and there is a
jump in the concentration at the cell membrane, which is

captured well by the present sharp interface method. It is

this jump that provides the driving force for water loss

from the cell. In the absence of a sharp-interface treat-

ment of the cell membrane this jump will be smeared and

the correct cell shrinkage response will not be obtained.

As seen in Fig. 2(f), although the solute concentration is

very high at the ice front and the jump in solute con-

centration across the cell membrane is large, the con-

centrations within the extra- and intracellular solutions

are nearly uniform. This is because of the low Peclet

numbers in this temperature range, which makes for

very rapid solute diffusion.

To establish the validity of the calculations presented

in this paper, we performed several tests, which are

summarized in Figs. 3–5. To demonstrate that the con-

clusions reached in this work are independent of the grid

density employed in the simulations, the cell volume

response for a case with a high cooling rate, B¼ 10,000

�C/min, was computed on meshes with 250· 250 (Fig. 4)

and 500· 500 (Fig. 5) grid points. Initial sinusoidal

perturbations were imposed on a circular front, with

magnitude of a few mesh cells and wavelengths corre-

sponding to 1/5th of the circumference. A comparison

between the volume response on the two meshes

(Fig. 3(a)) shows that the results are in close agreement.

The details of the freezing front morphology and the

solute concentration field are shown in Fig. 4 (for the

coarser 250 · 250 mesh) and in Fig. 5 (for the finer

500· 500 mesh). It may be noticed that the interface

morphology for the coarser mesh shows asymmetries in

the breakdown of the front into instabilities. This is due

to the fact the lower resolution provided by the 250· 250
mesh results in higher numerical noise which is amplified

as the instability grows. While this spurious instability

exists in Fig. 4(b) it is no longer observed in Fig. 4(c).

This is due to the surface-tension-induced coarsening of

the interface morphology as the front readjusts the in-

stability wavelengths. Note that in Fig. 5, i.e. for the

finer mesh, the asymmetry in the breakdown is absent

throughout. Therefore, with a sufficiently fine mesh for a

particular freezing protocol, the numerically induced

asymmetric perturbations can be eliminated entirely.

However, this comes at the expense of an increase in

computational times. On the other hand, the presence of

the asymmetric perturbations (superposed on the pri-

mary instabilities of the front) has little effect on the

volume response of the cell as seen from Fig. 3(a). Figs.

4(d) and 5(d) reveal that the solute concentration

fields for the two meshes do reflect the presence of the

instabilities on the front. However, the average con-

centration of solute in the unfrozen solution and the

resulting volume response shown in Fig. 3 is nearly

identical for the two meshes. In light of our interest in

the volume response of the cell and the good agreement

between the results on the two meshes shown in Fig. 3,



Fig. 2. Solute concentration (in mol/l) contours (indicated using gray-scales) during ice–cell interaction at the cooling rate B ¼ 1000

�C/min and T0 ¼ �0:54 �C and using a high surface tension (c0 ¼ 1:65 N/m) to suppress instabilities. (a) Time: 0.0526 s, temp: )1.4231
�C; (b) time: 0.1533 s, temp: )3.098 �C; (c) time: 0.4144 s, temp: )7.4476 �C; (d) time: 0.7370 s, temp: )12.819 �C. Solute concentration
profiles across the horizontal centerline of the cell for: (e) time: 0.0526 s, temp: )1.4231 �C; (f) time: 0.4144 s, temp: )7.4476 �C.
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we retain the 250· 250 mesh for subsequent calcula-

tions.

Since the cell is impermeable to salts and only water

enters or leaves the cell, the total amount of salt in the

cell should remain constant as the cell shrinks. Fig. 3(b)

shows the variation in the total amount of the salt in the

cell with time. The ratio of the total salt contained in the

cell at any time to the initial salt content (cV =c0V0) was
computed, where subscript ‘‘0’’ indicates initial values.
The figure shows that the total amount of salt in the cell

remains close to the original value. There is a slight

deviation from the expected value of 1.0 as the cell

shrinks due to the fact that, as the cell shrinks, the

number of grid points inside the cell decreases and hence

the resolution of the intracellular medium is not con-

stant as time progresses. Furthermore, as the cell shrinks

the concentration values in the cell increase dramatically

and the deviations from the solute conservation in the



Fig. 3. The characteristics of the volume response of a cell under the influence of external ice formation studied by varying control

parameters. (a) The effect of mesh size on the predicted cell volume for a cooling rate of 10,000 �C/min. (b) The total salt content in the

cell plotted against temperature (equivalently time) for two cooling rates. (c) The effect of interface stability for fixed surface tension on

the volume shrinkage.
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cell are also inflated to some extent by these large values

of concentration. This deviation can of course again be

reduced by using finer meshes.

In Fig. 3(c) we assess the effect of the morphology of

the ice–solution front on the cell volume response. The

morphology of the interface can be controlled by vary-

ing the surface tension. For a high enough value, such as

c0 ¼ 1:65 N/m, interfacial instabilities can be suppressed

and the front will then propagate as an unperturbed

circle as it approaches the cell. For the case shown in

Fig. 3(c), changing the surface tension value does not

cause much effect on the volume response curve for the

lower cooling rate value (1000 �C/min). In fact, the

Gibbs–Thomson effect (Eq. (3)) depresses the interface

temperature by only a small value. The morphology of

the interface, however, is very sensitive to small changes

in the interfacial tension and the wavelengths of the in-

terfacial instabilities depend on this value. In Fig. 2(a)–

(d) we showed the interaction of an initially perturbed

ice front with a cell when the surface tension of the ice–

solution interface is given an artificially high value in

order to suppress instabilities. This case may be con-
trasted with that in Fig. 6 (for the same cooling rate as in

Fig. 2), where the surface tension is given the value for

pure ice–water interface, and an initial perturbation was

imposed as described previously. These two cases illus-

trate the effects of interfacial tension on cell–ice inter-

action. The final shape of the ice front is determined by

the capillarity effects. While the high surface tension

restabilizes the interface in Fig. 2, for the low interfacial

tension in Fig. 6, the interface becomes unstable and the

salt is segregated in deep grooves between the fingers of

ice. The cell in Fig. 2 faces a nearly uniform solute dis-

tribution in the extracellular medium, while that in Fig.

6 sees a more inhomogeneous environment. However,

for the geometry and conditions investigated here, the

Peclet number is small and the solute in the extracellular

medium homogenizes rapidly. In both cases the forma-

tion of ice and shrinkage of cell occur rapidly (in about

0.7 s, corresponding to a temperature of )12 �C). In
Figs. 2(e), (f) and 6(d), (e) we show the profiles of salt

concentrations across the domain at the horizontal

centerline of the domain. Clearly the solute distribution

in the unstable case is different from the stable case since



Fig. 4. The interaction of an unstable ice front with the cell. Cooling rate B¼ 10,000 �C/min, T0 ¼ �5:46 �C, surface tension¼ 0.165 N/

m. A 250· 250 grid was used. Salt concentration contours (gray-scales indicate levels in mol/l) are shown at: (a) t ¼ 9:215E)03 s,

T ¼ �6:997 �C; (b) t ¼ 3:31339E)02 s, T ¼ �10:981 �C; (c) t ¼ 0:111 s, T ¼ �24:031 �C. Concentration profile of NaCl across the

horizontal centerline of the cell: (d) corresponding to the contours in (b); (e) corresponding to the contours in (c).
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the rejected salt accumulates in the grooves between the

ice fingers. However, the concentration field in the so-

lution between the ice front and the cell is comparable in

the two cases. Therefore, the nature of the interface

stability does not appear to have much of an impact on

the cell–ice interaction behavior for the particular cases

shown in Figs. 2 and 6. In particular, the volumetric

response of the cell is almost identical for the two values

of the surface tension for the low cooling rate, as shown

in Fig. 3(c). For a higher cooling rate (10 000 �C/min)

the interfacial instability does affect the volume response

of the cell when compared to a stable interface case, as

seen in Fig. 3(c). However, the differences for the present

configuration are modest. Note however, that this con-

clusion applies for the particular configuration chosen

for simulation in the present case. In general, the re-

sponse of the cell to the advancing ice front may be more

significantly affected by the nature of the interfacial in-

stabilities (such as the tip velocity, and tip curvature)

and also by the distance of the ice front from the cell at

the onset of cooling. This is because the solute concen-

tration at the tip of the steady-state dendrite (and the

distribution of solute in the boundary layer that ac-

companies the steadily propagating tip) will depend on

the thermal conditions (through Eq. (3)). These aspects
are being investigated using the present numerical

technique in ongoing work.

The effect of varying the membrane permeability on

the volumetric response of the cell due to water loss

from osmosis is shown in Fig. 7. The permeability value

Lp has been varied in 10 equal intervals between the

values of 1.66· 10�12 m/(s Pa) and 1.66· 10�11 m/(s Pa).

The cooling rate here is 1000 �C/min. The lower value of

permeability (Lp0) corresponds to that of the red blood

cell. The volume response of the cell in each case is

shown against time. The cell with high permeability

shrinks rapidly (in about 0.2 s) while the low perme-

ability cell takes about three times as long to lose all the

water. There is clearly a highly non-linear relationship

between the permeability and the time of shrinkage. In

order to compare our results with those of the mem-

brane-limited (Mazur) model in terms of survival pre-

diction, we plot the temperature at which the cell water

volume reaches 5% of its initial value. The predictions

from the present calculations are in fair agreement with

that obtained from the Mazur model in terms of the

trend but the present calculations indicate that the

minimum temperature experienced at this level of

shrinkage is marginally higher than that indicated by the

Mazur model. For the range of permeabilities and



Fig. 5. The interaction of an unstable ice front with the cell. Cooling rate B¼ 10,000 �C/min from T0 ¼ �5:46 �C, surface ten-

sion¼ 0.165 N/m. A 500· 500 grid was used. Salt concentrations contours (with gray-scales indicating the levels in mol/l) are plotted at:

(a) t ¼ 5:09E)03 s, T ¼ �6:3111 �C; (b) t ¼ 1:73E)02 s, T ¼ �8:3415 �C; (c) t ¼ 0:1137 s, T ¼ �24:401 �C. Concentration profile of

NaCl across the horizontal centerline of the cell: (d) corresponding to the contours in (b); (e) corresponding to the contours in (c).
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cooling rate used here the Peclet numbers remain small

and hence the membrane-limited model appears to

capture the cell–ice interaction fairly well.

Fig. 8 shows the response of the cell to the extracel-

lular ice formation and compares the result from the

present simulations to the Mazur model. The ice for-

mation in each case is initiated as in the above cases,

with a circular front 4 cell radii away from the center of

the cell. The initial temperature is )0.5 �C in each case.

The ice front reaches the cell and begins to interact with

it after an interval, so that the temperature at which the

interaction begins is different for different cooling rates.

To compare with the Mazur model, we computed the

volume loss in the Mazur model by starting from the

temperature at which the ice and cell begin to interact in

our simulations. Fig. 8(a) and (b) show volume loss

curves for two values of the cooling rate, 1000 and 5000

�C/min respectively. The volume loss predicted from the

present simulations are in close agreement with that of

the Mazur model as would be expected for the low Pe-

clet number regime considered in this study. Predictions

of the solute fields on the extra- and intracellular

membrane surfaces for the present simulations (where

the concentrations are averaged over the circumference

of the cell) and the membrane-limited Mazur model are
made in Fig. 9. Fig. 9(a) shows the intra- and extracel-

lular membrane surface concentrations at the low cool-

ing rate of 1000 �C/min while Fig. 9(b) shows these

values for the high cooling rate of 5000 �C/min. For

both the low as well as high cooling rate, in Fig. 9(a) and

(b) respectively, the concentrations for the two models

appear to be in fairly good agreement. The extracellular

concentration is in better agreement than the intracel-

lular, but the deviation of the intracellular concentra-

tions are small initially and increases in the later stages

of the volume loss. Fig. 9(c) plots the difference in

concentration across the membrane (i.e. the driving

force) for the two models. As seen from the figure the

present model predicts driving forces in good agreement

with the Mazur model as indicated by the good agree-

ment of the volume loss curves in Fig. 8.

In Fig. 10, we show the interaction between the cell

and ice front when the domain is not maintained at a

uniform temperature. The temperature is allowed to

vary in the domain and the transport equation for heat

is solved in a fully coupled fashion along with the solute

transport equation. The boundary condition for tem-

perature, Eq. (5) is applied at the interface. The cooling

rate is imposed to obtain the temperature on the edges of

the domain. The freezing interface consequently assumes



Fig. 6. The interaction of an unstable ice front with the cell. Cooling rate B ¼ 1000 �C/min from T0 ¼ �0:54 �C, surface ten-

sion¼ 3.307E)2 N/m. Salt concentrations are shown at: (a) t ¼ 0:0416 s, T ¼ �1:2384 �C; (b) t ¼ 0:2894 s, T ¼ �5:3664 �C;
(c) t ¼ 0:6711 s, T ¼ �11:722 �C. Concentration profile of NaCl across the horizontal centerline of the cell for: (d) time corresponding

to (a); (e) time corresponding to (b).

Fig. 7. The response of the cell for a cooling rate of B ¼ 1000 �C/min, as the permeability of the cell membrane is varied. (a) The 10

curves correspond to values from 1.66E)12 m/(s Pa) to 1.66E)11 m/(s Pa) in increments of 1.66E)12 m/s Pa. (a) Plot of the volume

versus time. (b) Temperature at which cell water volume reaches 5% of the initial value.
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a shape that reflects the square shape of the domain up

to the stage that the front closes in on the cell. The

concentration and temperature contours during the

freezing process are shown in Fig. 10. The temperature

field is seen to vary across the domain with the domain
edges being colder than the center. Solute concentration

and temperature profiles are shown in Fig. 10(c) and (d)

respectively. The solute field shows large jumps at the

cell membrane. The temperature field is continuous

everywhere, with discontinuous slope at the ice–liquid



Fig. 9. Comparison of predictions made by the present simulations and the membrane-limited Mazur model. (a) The intra- and ex-

tracellular salt concentrations for cooling rate of 1000 �C/min. (b) Intra- and extracellular salt concentrations for cooling rate of 5000

�C/min. (c) Difference between the extra- and intracellular salt concentrations at 1000 �C/min. (d) Difference between the extra- and

intracellular salt concentrations at 5000 �C/min.

Fig. 8. Response of the cell to extracellular ice. Comparison of simulation results (––) is made with the Mazur model (- - -) for two

different cooling rates: (a) B ¼ 1000 �C/min, (b) B ¼ 5000 �C/min.
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Fig. 10. The interaction of an unstable ice front with the modeled cell under non-isothermal condition. Cooling rate B ¼ 1000 �C/min

from T0 ¼ �0:5 �C, surface tension¼ 3.307E)2 N/m. NaCl concentration contours (gray-scale indicates levels in mol/l) at: (a) t ¼ 0:062

s, (b) t ¼ 0:57 s, (c) t ¼ 1:26 s. Temperature contours (gray-scale indicates levels in �C) at: (d) t ¼ 0:062 s, (e) t ¼ 0:57 s, (f) t ¼ 1:26 s.

NaCl concentration profiles across the horizontal centerline of the cell at: (g) t ¼ 0:20 s, (h) t ¼ 1:26 s. Temperature profiles across the

horizontal centerline of the cell at: (i) t ¼ 0:20 s, (j) t ¼ 1:26 s.
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interface due to latent heat release and at the membrane

due to jump in the salt concentration. The variation of

temperature across the domain is small (about 0.6 �C).
However, the rate of cell water loss can be significantly

different for the non-isothermal case as opposed to the

isothermal situation, as demonstrated in Fig. 11. Tra-
ditional methods for analyzing volume response of cells

have relied on Mazur�s [7] original approach where the

medium is assumed isothermal (i.e. latent heat effects

and the heat transport phenomena are ignored) and the

solute polarization in the extra- and intracellular me-

dium is ignored. In Fig. 11 we compare the volumetric



Fig. 11. The volume response of the cell for the isothermal and

non-isothermal cases. Cooling rate B ¼ 1000 �C/min.
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response of the cell against the temperature for the iso-

thermal and non-isothermal cases, all other parameters

in the computation remaining identical. Note that since

the temperature is decreased at a constant rate in the

cooling process, the x-axis in Fig. 11 can also be thought

of as the time axis. Clearly, the results from the iso-

thermal and non-isothermal cases differ significantly.

Thus, the thermal and solutal inhomogeneities can

couple in a non-linear fashion with the temperature-

dependent membrane permeability to provide cell vol-

ume response that deviates significantly from estimates

of such response obtained from the Mazur model. The

interface shape, temperature and composition are all

fully coupled in the non-isothermal case through the

curvature, the Gibbs–Thomson effect and the phase

diagram. This coupling causes significant deviation of the

freezing behavior and solute rejection at the ice–solution

interface and thus the driving force for cell water loss is

impacted. Thus, there may be significant differences

between the cell response observed in a cryomicroscope

(under isothermal conditions) and the actual cell re-

sponse when cryopreserved in a straw or vial (under

non-isothermal conditions). This may in part explain the

large discrepancies in predicted and observed optimal

cooling rates for sperm cryopreservation [21].
5. Conclusions

Numerical simulations of the interaction of ice with

biological cells have been performed to study the re-

sponse of the cell to ice formation in the extracellular

medium. The sharp interface numerical method em-

ployed allows for the computation of ice formation and

cell shrinkage on a fixed Cartesian mesh. Solute polar-

ization at the ice–liquid interface and the cell membrane
has been accounted for in the model. The thermophys-

ical data employed in the paper have been obtained from

the literature and correspond to physiological aqueous

salt solutions and red blood cells. The effects of various

parameters on the response of the cell have been studied.

The kinetics of cell dehydration is related in a highly

non-linear fashion to the membrane permeability. For

the parameters studied in this paper, the results on cell

volume loss obtained from the present and Mazur

models appear to be in good agreement for a wide range

of permeabilities and cooling rates. Thus, for the par-

ticular configuration chosen in the present study (i.e. the

cell is surrounded on all sides by the ice front, there are

no cryoprotectant additives, and the diffusion coeffi-

cients are constant) and for the low Peclet number re-

gimes investigated, solute polarization and interfacial

morphology appear to have only modest effects on the

response of the cell. However, it is found that the as-

sumption of temperature uniformity in the sample can

have a significant influence on predictions of cell volume

response. Even though the temperature differences are

small in the non-isothermal cases studied, there is a

significant difference in the response of the cell to ice

between the isothermal and non-isothermal situations.

In an upcoming paper the action of cryoprotective

agents, which are used in practical cryopreservation

protocols, are studied by modeling the transport and

solidification processes in ternary systems. In ongoing

work the complex dependencies of the cell volume on the

various thermophysical parameters and on the process-

ing parameters are being investigated in greater detail.

In particular, regimes in which the conventional mem-

brane-limited transport model is known to fail [22] are

being explored. The model presented is also being cou-

pled with a model for prediction of intracellular ice

formation in order to be able to predict cell survival

probabilities.
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Appendix A

The relevant dimensional quantities used in the cal-

culations are as follows: the diameter of the cell X ¼ 10

[lm], the time scale for mass transport tc ¼ X 2=Dl ¼
0:1282 [s] and the initial concentration of the solute

c0 ¼ 0:1548 [mol/l].
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The material parameters used in the calculations are:

thermal diffusivity of liquid (water) al ¼ 0:115 [mm2 s�1],

thermal diffusivity of solid (ice) as ¼ 1:364 [mm2 s�1],

binary diffusivity of NaCl in liquid Dl ¼ 7:8� 10�4

[mm2 s�1], binary diffusivity of NaCl in solid Ds ¼
7:8� 10�7 [mm2 s�1], latent heat of fusion L ¼ 0:333
[Jmm�3], equilibrium freezing point Tm ¼ 273:15 [K],

partition coefficient p ¼ ðcNaClÞs
ðcNaClÞl

¼ 1:00� 10�3, thermal

conductivity of liquid kl ¼ 5:36� 10�4 [Jmm�1 s�1 K�1],

thermal conductivity of solid (ice) ks ¼ 2:34� 10�3

[Jmm�1 s�1 K�1]. The permeability Lp0 ¼ 1:66� 10�12

m/s Pa, and surface tension c0 ¼ 0:033 N/m. The liqui-

dus curve is given by TLi ¼ b0 þ b1cLi þ b2c2Li þ b3c3Liþ
b4c4Li where b0 ¼ 273:15 [K], b1 ¼ �3:362 [K lmol�1],

b2 ¼ �0:0414 [K l2 mol�2], b3 ¼ �0:0404 [K l3 mol�3],

b4 ¼ �6:616� 10�4 [K l4 mol�4].
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